Solving the Sparsity Problem: Collaborative Filtering via Indirect Similarities

نویسندگان

  • Christian Desrosiers
  • George Karypis
چکیده

Collaborative filtering is an important technique of information filtering, commonly used to predict the interest of a user for a new item. In collaborative filtering systems, this prediction is made based on user-item preference data involving similar users or items. When the data is sparse, however, direct similarity measures between users or items provide little information that can be used for the prediction. In this paper, we present a new collaborative filtering approach that computes global similarities between pairs of items and users, as the equilibrium point of a system relating user similarities to item similarities. We show how this approach extends the classical techniques based on direct similarity, and illustrate, by testing on various datasets, its advantages over such techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Solving the Sparsity Problem in Recommender Systems Using Association Retrieval

Recommender systems are being widely applied in many fields, such as e-commerce etc, to provide products, services and information to potential customers. Collaborative filtering as the most successful approach, which recommends contents to the current customers mainly is based on the past transactions and feedback of the similar customer. However, it is difficult to distinguish the similar int...

متن کامل

Data Mining Support for Case-Based Collaborative Recommendation

This paper describes ongoing research which aims to enhance collaborative recommendation techniques in the context of PTV, an applied recommender system for the TV listings domain. We have developed a case-based perspective on PTV’s collaborative recommendation component, viewing the sparsity problem in collaborative filtering as one of updating and maintaining similarity knowledge for case-bas...

متن کامل

Semantics Based Collaborative Filtering

Collaborative filtering is one of the most successful and popular methodologies in recommendation systems. However, the traditional collaborative filtering has some limitations such as the item sparsity and cold start problem. In this paper, we propose a new methodology for solving the item sparsity problem by mapping users and items to a domain ontology. Our method uses a semantic match with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008